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SUMMARY

A suspension of non-neutrally buoyant, large, nearly monodisperse spheres is studied both in batch
sedimentation and in shear between concentric rotating cylinders. We apply a continuum constitu-
tive equation based on the di�usive �ux model augmented with buoyancy terms derived by Acrivos
and coworkers and discretize the resulting equation set with the �nite element method. We simulate
batch sedimentation using this method and obtain a reasonable match with experiment. Next used two-
dimensional NMR imaging to measure the evolution of solid fraction pro�les in the same suspension
undergoing �ow between rotating concentric cylinders with two di�erent initial conditions. Here, both
gravity-induced and shear-induced particle migration are signi�cant. Under these conditions, we have
found that simulating the correct initial condition is critical to matching the experimental results. When
this is done, the model results compare well with the experiments. Copyright ? 2002 John Wiley &
Sons, Ltd.
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INTRODUCTION

Particle-laden shear �ows are important in a wide variety of applications in oil and gas pro-
duction and in the mineral, chemical and food processing industries. These include such
application as batch sedimentation, hydraulic fracturing technology and slurry transport. Par-
ticle separation due to density di�erences occurs in many non-colloidal mixtures of particles
and liquids, and many processing activities can bene�t from knowledge of the physics of
systems undergoing sedimentation or �otation. For this reason, we are trying to develop a
modeling capability that allows us to predict the �ow and particle transport properties of
arbitrary buoyant suspensions in complex geometries.
It is now well known that �owing suspensions of particles in a liquid have been known to

exhibit particle migration even in creeping �ow and in the absence of signi�cant nonhydrody-
namic or gravitational e�ects [1–3]. In particular, Leighton and Acrivos [2] proposed scaling
arguments that identi�ed three causes of particle migration, namely, gradients in shear rate,
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concentration, and relative viscosity. These arguments are the basis of a constitutive model for
the evolution of particle concentration in a �owing suspension proposed by Phillips et al. [4]
and referred to as the di�usive �ux model. This constitutive description couples a generalized
Newtonian momentum equation where the local viscosity of the suspension is dependent on
the local volume fraction of solids with an evolution equation to describe the shear-induced
migration of the suspended particles. Subia et al. [5] extended the di�usive �ux model from
viscometric to multidimensional �ows using a scalar shear rate invariant to describe the shear-
induced migration and solved the resulting equations with the �nite element method. They
obtained excellent agreement between the modeling results and NMR imaging of the particle
concentration.
The term viscous resuspension was �rst used by Leighton and Acrivos [6] to describe the

resuspension of sedimented particles due to shear �ow. Complex �ow and particles pro�les
can arise resulting from a balance of gravitational �ux on the particles, which tends to lead
to segregation, with shear-induced migration, which can cause remixing. A number of ex-
perimental studies have been carried out to look at the e�ects of viscous resuspension in
pipe, channel and Couette geometries [7–11]. However, little work has been done on com-
putational modeling of viscous resuspension. Most of the existing modeling work has been
at the particle-level, which though elucidating, can be computationally intensive and di�cult
to apply to arbitrary geometries [12–14]. Continuum approaches have a greater chance of
being useful for modeling a variety of �ow �elds and suspensions. However, much of the
continuum modeling work has used simpli�ed equations that are either analytically tractable
or solved with rudimentary numerical methods [15]. For instance, Shauly et al. [16] modeled
viscous resuspension in a polydisperse system and looked at a variety of geometries, but
simpli�ed the equations to examine one-dimensional �ows only. Miskin et al. [17; 18] model
viscous resuspension in channel �ows, but simplify the equations to two-dimensions and use
a specialized �nite di�erence method.
One exception is the pivotal work of Zhang and Acrivos [19] who formulated a general

numerical approach to modeling multidimensional viscous resuspension with few simplifying
assumptions. They used a continuum approach and extended the work of Leighton and Acrivos
[2] to non-neutrally buoyant suspensions with the inclusion of a hindered settling function
in the particle evolution equation and a buoyancy term in the momentum equation. They
discretized the theoretical model with the �nite element method and examined fully developed
�ow pro�les in a pipe �ow and obtained good agreement with experiment.
Here we examine the applicability of a continuum model of viscous resuspension and base

much of our work on that of Zhang and Acrivos [19] and Phillips et al. [4], with some
signi�cant modi�cations. We simulate the behavior of concentrated suspensions of large,
monodisperse spheres with a Galerkin, �nite element, Navier–Stokes solver into which is
incorporated a continuum constitutive relationship based on the di�usive �ux model but mod-
i�ed to allow gravity e�ects. Results of the model are compared with experiment. The exper-
iments involve using nuclear magnetic resonance (NMR) imaging to determine noninvasively
the evolution of the solids-concentration pro�les of suspensions as they separate when sub-
jected to a variety of slow �ows in which gravity has a substantial e�ect. The model is �rst
tested on batch sedimentation to insure the correct form of the hindered settling function
was used. Once the model was validated for settling without �ow, a more complex problem
was simulated that included shear as well as buoyancy e�ects. The problem studied was vis-
cous resuspension in a large-gap Couette from two di�erent initial conditions. The �rst initial
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condition was a well-mixed, homogeneous suspension while the second was a fully sedimented
suspension.
In the following section we describe the experimental procedure: the batch sedimentation

experiments in the �rst subsection and the wide-gap Couette experiments in the second. The
model is described in the next section, including discussion about the equations and numerical
method. In the �nal section we give the problem de�nition and present the results, both of
the model and experiment, and discuss the comparison between them.

EXPERIMENTS

Batch sedimentation

A single particle in a non-neutrally buoyant �uid will fall at a rate given by its Stokes velocity,
which is related to the particle and the �uid properties as well as gravity. For a suspension
of particles, the behavior is more complex (see for instance Probstein [20] for an excellent
discussion of sedimentation). An initially well-mixed non-neutrally buoyant suspension will
separate into three di�erent phases as shown in Figure 1. For heavy particles, a sediment will
form at the bottom of the container approaching the maximum packing particle concentration,
with a well-mixed suspension in the middle of the container at the average concentration
and a clear zone of �uid at the top of the container, which is particle free. At the phase
boundaries there are discontinuities in densities and velocity that are termed kinematic shocks.
The phase boundaries move toward each other at velocities that can be worked out using the
one-dimensional theory of Kynch [21]. The motion of the phase boundaries is related to
the Stokes velocity and a hindered settling function [22]. For a suspension of particles, the
hindered settling function is necessary to account for the fact that the particles are not settling
as single spheres, as was assumed when deriving the Stokes velocity, but interact with their
neighbor particles as they settle. Once these two shock fronts have come together, the �nal
state of the suspension has only two remaining phases; sediment and pure �uid.

Figure 1. Batch sedimentation from an initially well mixed suspension.
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Table I. Density, viscosity, and particle data for PMMA experiments.

Quantity Value

density PMMA, �0s 1:18 g cm−3

density glycerol=water solution, �0f 1:253 g cm−3

viscosity glycerol=water solution, �0 5:889 g cm−1 s−1

maximum volume fraction, �max 0.58, 0.64
initial volume fraction, �0 0.20
particle radius, a 0:0397 cm

The sign of the density di�erence between the solid phase and the liquid phase determines
whether the particles will sediment or �oat; aside from the direction of solid motion there is no
di�erence between the two processes for the purposes of this paper. In this work, descriptions
are given in terms of �otation, where the dispersed phase is rising and the continuous phase
is sinking.
Previous NMR studies have demonstrated that imaging may be used to observe shear-

induced particle migration [3], to measure the hindered settling function by observing the
clearing layer [23], and also to study interfacial broadening [24]. In this paper, we �rst use
one-dimensional NMR to determine the liquid fraction as a function of the vertical coordinate
and time. Two-dimensional NMR imaging of batch sedimentation shows that the assumed
one-dimensional nature of the concentration pro�le is true; however, the velocity is not one-
dimensional.
The �otation experiments were performed in acrylic right circular cylinders. The ID of

the cylinders was 3:75± 0:01 cm and the suspension samples were 4:0± 0:1 cm deep, which
made the total volume of the samples 44± 1ml. The height of the sample vessel is restricted
by the small imaging volume available in our horizontal magnet, and so our results are not
directly comparable to many previous studies. The limitation is not inherent in the technique,
but rather in the scale of our particular instrument.
The suspending liquid was nominally 96 per cent glycerol, 4 per cent water by weight. The

longitudinal relaxation time Tl of the liquid was 0:3± 0:1 s. The solid phase was 0.0794 cm
diameter polymethyl methacrylate (PMMA) spheres. An isolated particle of the average size
would have a Reynolds number ¡10−6 and a Peclet number ¿1010, and a Stokes settling
velocity of 3:7× 10−3 cm s−1. Table I lists the relevant properties of the suspension and its
components. The maximum volume fraction was taken from the maximum value of the one-
dimensional NMR images described below. However, it has been found that this maximum
concentration increases over time as consolidation occurs to the theoretical value for maximum
packing which is 0.64 for random closed pack spheres. As discussed in the numerical modeling
section, the value of 0.64 is also optimal for matching the viscosity data. Thus, 0.58 was used
in the early-time batch sedimentation study while 0.64 was used for the Couette studies.
The suspension was well mixed immediately prior to the experiments and then placed in

the bore of the magnet. Through visual observation, we noted that �ow due to the mixing
ceased quickly, well before the initial NMR image was taken.
Proton 1H NMR experiments [25] were performed in a 1:89 T; 31 cm bore, horizontal,

superconducting magnet. A one-dimensional NMR technique produced a measurement of the
amount of liquid as a function of the height averaged over a 16.32–64:32 s period. The solid
phase produces no NMR signal in this experiment. Since the total height of the suspension is

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:465–483



PARTICLE-LADEN SHEAR FLOWS 469

monitored and does not change in the course of the experiment, we assume there is no signif-
icant volume of air bubbles so that the solid fraction is directly measured. Two-dimensional
imaging, which takes signi�cantly more time per image, was also performed to con�rm that
the concentration was uniform on average at any one height.

Wide-gap Couette experiments

Nuclear magnetic resonance (NMR) imaging was also used to measure the concentration pro-
�le during the demixing of an initially well-mixed suspension of the same non-neutrally buoy-
ant particles and liquid as described above. A suspension was placed between two concentric
cylinders (wide-gap Couette), the inner cylinder of which rotated while the outer remained
�xed. The Couette device was placed in the horizontal bore magnet with the Couette axis
parallel to the bore axis. An inhomogeneous shear �ow �eld is produced in the wide gap of
the Couette device. Because of this, the suspended particles will migrate toward the low shear
rate region near the outer cylinder walls, even though in these experiments the conditions are
such that colloidal and inertial forces do not exert an appreciable e�ect on the suspensions.
However, gravity is also acting on the suspension causing the particles to �oat toward the
upper surface.
The techniques used in these experiments remain essentially the same as those described by

Abbott et al. [3]. The outer radius of the inner rod (Ri) was 0:64cm and the inner radius of the
outer cylinder (Ro) was 2:54cm, and the length of the suspension-�lled cavity was 25cm. The
shaft was turned at a steady rate of 55 revolutions per minute. NMR images were taken of a
cross-sectional slice, 10-mm thick, perpendicular to the Couette axis, about midway along the
apparatus. The time required for each image was about four minutes. In these experiments
the intensity values in the part of the slice corresponding to the Couette were normalized
with a pure �uid blank. As in the batch settling experiments, the solid particles produced no
signal, so the intensity of the image yielded directly the volume fraction of liquid (and, hence,
particles).
Two types of Couette �ow experiments were carried out. In the �rst study, a suspension

of 35 per cent by volume of particles was mixed well and then loaded as rapidly as possible
into the Couette apparatus, then the apparatus was loaded into the magnet. However, this
process took several minutes, and taking the initial image also took several minutes. During
this time the particles were beginning to separate due to buoyancy. The motor was started as
soon as the initial image was completed. During subsequent image collection, the motor was
not stopped. In the second experiment, a suspension of 20 per cent by volume of particles
was allowed to reach equilibrium overnight inside a stationary Couette. The motor did not
start and the images were not collected until all the particles had �oated to the top.

NUMERICAL MODEL

Equations

A model based on previous work by Phillips et al. [4] and Zhang and Acrivos [19] was
used to predict the particle concentration evolution. One of the key features of this model is
the density di�erence between the �uid and the particle phases, which introduces a variable
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density throughout the �ow regime. Let �� and �s be the mass concentrations of the �uid
phase and particle phase, respectively. Thus,

�f = (1− �)�0f (1)

�s =��0s (2)

where � is the particle-phase volume fraction �0f and �
0
s are the pure phase densities. We also

de�ne the total mixture density as,

�=�f + �s=(1− �)�0f + ��0s (3)

Hence, the suspension density is not constant, but depends on particle concentration. This
introduces as Boussinesq-like, buoyancy driven �ow term in the momentum equation.
The momentum equation is further complicated by the particle-concentration dependent,

non-Newtonian viscosity.

�
@v
@t
+ �v · ∇v+∇p−∇ · (�(∇v+∇vt))− (�0f − �0s )�g=0 (4)

where v is the suspension velocity, p is the dynamic pressure, g is the gravitational accelera-
tion, and t is time. Note that the constant portion of the momentum source has been absorbed
by the dynamic pressure. This tends to create a more stable numerical implementation for
buoyancy driven �ows, since the system will be more responsive to changes in the source
term.
The viscosity depends on the particle concentration. Its behavior is quite nonlinear, ranging

from highly viscous solid-like behavior at the limit of maximum packing (�m) to much lower
viscosity in the pure �uid (�0) region. Here we use a Krieger form for the viscosity model
[26], since it is found to agree well with experimental data. In this model, n is a parameter
that is used to best �t the viscosity data.

�=�0

(
1− �

�m

)−n
(5)

In Figure 2 we show results of Equation (5) compared to literature values collected by Thomas
[27]. These values have been shown to agree with falling ball and spinning ball measurements
on similar suspensions to those used in this study [28].
Though each phase is incompressible and the continuum is incompressible, the continuity

equation will no longer be solenoidal, due to the density di�erence between particles and
carrier �uid. This introduces the particle �ux, Js into the continuity equation.

∇ · v= (�
0
s − �0f)
�0s �0f

∇ · Js (6)

To determine the particle �ux, we write a particle conservation equation in the standard
manner.

@�
@t
+∇ · (�v)=−∇ · Js

�0s
(7)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:465–483



PARTICLE-LADEN SHEAR FLOWS 471

Figure 2. Viscosity data for suspensions of uniform spheres. Lines show Equation (5) with n=1:82
and �m given in the legend. Phillips et al. [4] used �m=0:68.

rearranging Equation (7) and inserting Equation (6) in place of the divergence of velocity
gives

@�
@t
+ v · ∇�=−

(
�0f + ���

�0s �0f

)
∇ · Js=− �

�0s �0f
∇ · Js (8)

The �ux, Js, can be de�ned by particle migration from high shear to low shear regions, from
high concentration to low concentration, and due to sedimentation or �otation.

Js
�0s
=− (�D�∇(�̇�) + �2�̇D�∇(ln �)) + fhindredvstokes� (9)

where D� and D� are parameters that must be �t to data, but which scale as the particle radius
squared. Note that we are occasionally forced to add small amounts of numerical di�usion
to stabilize Equation (9). The �rst two terms in Equation (9) are the Phillips model [4] and
the last term is the extension to settling suspensions proposed by Zhang and Acrivos [19].
According to Phillips [4] a good �t of the data gives the following values of the coe�cient:

D�=0:41a2 D�=0:62a2 (10)

Tetlow et al. [29] used experiments and statistical methods to determine a concentration
dependent D�, with a constant D�. We follow a similar procedure, but incorporated new
NMR data for a range of concentrations [30]. Regression of one-dimensional �nite-di�erence
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model against these Couette �ow experiments using the same particles but in a neutrally
buoyant �uid produced the following di�usion coe�cients.

D�=1:05�D� D�=0:651a2 (11)

�̇ is the magnitude of the shear-rate tensor and is directly related to the second invariant of
the shear-rate tensor [31]. The shear-rate tensor is de�ned:

�̇
∼
=(∇v+ (∇v)t) (12)

and its magnitude is given by:

�̇=
√

1
2 ( �̇∼

: �̇
∼
): (13)

The buoyancy term is written as a Stokes single particle velocity multiplying a factor less than
one, termed a hindered settling function. The Stokes velocity is written in terms of the particle
radius, a, the density di�erence between the �uid and solid phases, gravitational acceleration
and viscosity of the pure �uid.

vstokes =
2
9
a2(�0f − �0s )g

�0
(14)

Here we use a hindered settling function similar to Zhang and Acrivos [19] except we use
the average concentration or a reference concentration to determine its value together with
the local viscosity. This hindered settling function was found to reduce the occurrence of a
physical shocks that would occur near the zone of maximum packing and to give realistic
looking pro�les for the maximum packing zone.

fhindered =
�0(1− �average)

�
(15)

The average concentration, �average, is just the initial concentration since the problems that we
are solving involve closed �ows. We have also experimented with other forms of the hindered
settling function including the classical Richardson–Zaki equation [32]:

fhindered = (1− �)n (16)

We found that Richardson–Zaki allows the value of the volume fraction to go above maximum
packing. This creates a slope in the concentration in the sediment from maximum packing
to one, something that is not seen in experiment. This is because Richardson–Zaki does not
go to zero at maximum packing as the Acrivos hindered settling function does. Figure 3
shows the Acrivos hindered settling function plotted with Richardson–Zaki. It is clear from
this �gure, and from the form of Richardson–Zaki, that it does not go to zero at maximum
packing (usually taken to be between 0.58 and 0.68). The Acrivos form of the hindered
settling function, on the other hand, will always go to zero at maximum packing since the
viscosity diverges at this value of the volume fraction.
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Figure 3. Comparison of di�erent forms of the hindered settling functions. (a) Richardson–Zaki versus
Acrivos with region of blow up; (b) blow up of function near maximum packing.
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Numerical method

Galerkin �nite element method. The equations of interest, the momentum Equation (4), the
continuity Equation (6), the species conservation Equation (7), and the scalar magnitude of
the shear-rate tensor are discretized with the Galerkin �nite element method. The shear-rate
must be discretized, since the particle-�ux, Equation (8), contains derivatives of this quantity.
If we did not have the magnitude of the shear-rate as an unknown, we would introduce second
derivatives of the velocity, making the approximation very inaccurate. In the �nite element
method, second derivatives are generally handled by integrating the di�usion term by parts,
moving the part of the di�erentiation to the weight function. For Equation (8), this cannot be
done since the divergence of �ux is used in the concentration equation and this term itself
is already integrated by parts. Piecewise projection methods can be used to approximate the
shear-rate invariant [5], but it has been found that convergence is accelerated by doing a full
least squares discretization.
The unknowns of interest are velocity, pressure, particle volume fraction and the shear-rate

invariant. For viscous incompressible �ow problems, velocity is generally interpolated using
a biquadratic shape function, Ni [33].

v≈ vh=
n∑
i=1
viNi(x; y; z) (17)

where v denotes the true velocity solution, vh denotes the approximate �nite element solution
and vi represents the velocities at the nodes. The velocity and the pressure have a constraint
between them called the Ladyzhenskaya–Babuska–Brezzi, or LBB, condition that requires the
velocity interpolant to be a higher order than the pressure interpolant [34; 35]. If this constraint
is not met, the problem becomes over speci�ed and pressure checker-boarding occurs. For
this reason, we use a bilinear or linear discontinuous approximation for the pressure.

p≈ph=
m∑
i=1
piN ′

i (x; y; z) (18)

No known constraint exists for the particle volume fraction or the shear-rate magnitude so we
are free to choose our interpolant. For batch sedimentation we use bilinear approximations
for both the volume fraction and the shear-rate, since this is more computationally e�cient
although it is less accurate. For the Couette studies, we needed the more accurate biquadratic
interpolants.

�≈�h =
m∑
i=1
�iN ′′

i (x; y; z) (19)

�̇≈ �̇h =
m∑
i=1
�̇iN

′′
i (x; y; z) (20)

The trial functions, Equations (17)–(20), are then substituted into the di�erential equations
in place of the continuous solution to form residual equations. The momentum residual, Rm
is:

R∼m=�
@vh
@t
+ �vh · ∇vh +∇ph −∇ · (�(∇vh +∇vth))− (�0f − �0s )�hg (21)
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The residual equations are then multiplied by weight functions and integrated over the domain.
We use the Galerkin �nite element method, so the weight functions are chosen to be the
shape functions themselves. The �nite element solutions are then found so that the weighted
residuals become zero in an integrated sense. For the vector momentum equation, we use a
vector weighting function. This yields a volume integral over V of the form.∫

V
Nie� ·

(
�
@vh
@t
+ �vh · ∇vh +∇ph −∇ · (�(∇vh +∇vth))− (�0f − �0s )�hg

)
dV =0 (22)

where e� is the unit vector in the coordinate directions. The viscous term is integrated by
parts to avoid second derivatives of the velocity. This gives

∫
V
Nie� ·

(
�
@vh
@t
+ �vh · ∇vh +∇ph − (�0f − �0s )�hg

)
dV

+
∫
V
∇(Nie�) : �(∇vh +∇vth) dV −

∫
S
Nin · e� · �(∇vh +∇vth) dS=0 (23)

The integration by parts using the divergence theorem creates surface integrals on S of the
domain, where n is the outward facing normal. If no boundary conditions are applied to
the momentum equation, the so-called natural boundary condition, the one arising from the
integration by parts, will be satis�ed in the weak integrated sense [36].
The continuity residual is weighted with the pressure basis function, N ′

i , and the �ux term
is integrated by parts.

∫
V
N ′
i (∇ · vh) dV +

(�0s − �0f)
�0s �0f

∫
V
∇(N ′

i ) · Js dV −
(
(�0s − �0f)
�0s �0f

)∫
S
N ′
i n · Js dS=0 (24)

This will introduce a natural boundary condition on the continuity equation which says that
the �ux in the directions normal to the boundary is zero. This is the same natural boundary
condition that we get from integrating the di�usion terms in the concentration equation by
parts.
The volume fraction residual is weighted with the volume fraction basis function, N ′′

i , and
the �ux term is integrated by parts.

∫
V
N ′′
i

(
@�
@t
+ vh · ∇�h

)
dV +

1
�0s �0f

∫
V
∇(�N ′′

i ) · Js dV

− 1
�0s �0f

∫
S
N ′′
i n · �Js dS=0 (25)

The shear-rate magnitude residual is produced in a similar fashion:∫
V
N ′′
i ( �̇∼h

−
√
(∇vh + (∇vh)t) : (∇vh + (∇vh)t)) dV =0 (26)
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Time derivatives are handled with a �nite di�erence discretization. If x represents the solution,
the time derivatives would be

dx
dt
=(1 + 2�)

(
xk+1 − xk
�tk+1

)
− 2�(ẋk) (27)

where � is a parameter which changes the di�erence equation from a �rst order backward
Euler scheme (�=0) to second order Crank–Nicholson scheme (�=0:5) and is set in the
input deck, xk+1 is the solution at the k +1 time step, xk is the solution at the previous time
step, and ẋk is the time derivative of the solution at the previous time step. For this work,
Crank–Nicholson was used. Equation (27) is used for the time derivatives of the velocity
in the momentum equation. For the species equation, because of its hyperbolic nature and
the steep front that is created during settling, we use a Taylor–Galerkin method for the time
integration. For details of the Taylor–Galerkin method see Donea [37].
The weighted residual equations with the di�erence formula time derivatives substituted in,

form a set of nonlinear algebraic equations on each element, which must be solved for the
nodal unknowns.

F(vh; ph; �h; �̇∼h
)=0 (28)

We linearize this system with the Newton–Raphson method around the initial guess or previous
solution, and rearrange the resulting equation to form an elemental sti�ness matrix, K . All
the elemental sti�ness matrices are assembled to form a global sti�ness matrix resulting from
contributions from all elements:

J (xn)(xn+1 − xn)=f (29)

where the subscript n denotes the iterate for Newton’s method. Note that we solve all equations
simultaneously in the same matrix in a fully coupled approach [38]. This large matrix equation
is then solved by Gaussian elimination to give the new solution. Iterative solvers can also
be used to invert Equation (29) if pressure stabilization is used [39]. This is a much more
e�cient way to solve large two-dimensional and three-dimensional problems. For details of
our implementation of pressure stabilization see Cairncross et al. [40].

RESULTS

Batch sedimentation

Problem description. The mesh and boundary conditions for the batch settling simulation are
given in Figure 4, along with the dimensions of the cylinder in which the particles �oat. The
mesh has 800 elements, 3321 nodes resulting in 9225 unknowns. Our initial goal is to use
the di�usive �ux model to match simple settling experiments, where there is no imposed �ow
�eld. The only motion is created by the movement of the particles themselves. Once su�cient
agreement was achieved between settling experiments and simulation, we would move on to
more complex �ows. The exponent of the Krieger viscosity model (Equation (5)), n, was
chosen to be 1.82 for the suspensions, to match available viscosity data. The properties of the
material were taken to be those listed in Table I. The simulation we ran will be compared to
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Figure 4. Boundary conditions and mesh for particle settling in a cylinder.

experimental results from NMR visualization of the particle and �uid movement in the results
section.

Simulations. The NMR images, when displayed in time sequence as a movie, show de�nite
swirling �ow occurring in the bulk of the suspension despite the fact that the suspension is
quiescent except for the �otation of particles. The assumption of one-dimensional �ow is not
necessarily a good one. Although the movement of the clearing layer front is steady and the
concentration pro�le appears to be one-dimensional, the velocity is clearly two-dimensional.
A two-dimensional view of the simulation results is given in Plate 1 for a suspension with

�0 = 0:20. From this �gure, we can see that the concentration pro�le is truly one dimensional
with the particles forming three distinct regions or zones, even though the simulation is two
dimensional. Clear �uid is formed at the bottom of the cylinder as the particles �oat up, since
they are lighter than the carrier �uid. A well mixed suspension at the initial volume fraction of
0.20 exists in the middle of the container. At the top of the container, particles pack together
to form a zone of maximum packing. Though the concentration �eld is one dimensional,
we can see that the velocity pro�les are two dimensional with two sets of buoyancy driven
vortices in the suspension and the clear �uid regions. Interestingly enough, these are very
similar to the vortices seen in the NMR data, so they may not be numerical arti�ces. The
vortex size also does not change with mesh re�nement.
Volume fraction versus height plots are given in Figure 5. This plot contains the NMR

data and the simulation results for comparison. The primary NMR data obtained is scaled
to represent continuous phase volume fraction as a function of height at 5 min intervals in
time. The simulation agrees qualitatively with the data in that we have two fronts that advect
towards each other over time: there is a clear �uid front, that is created by particles �oating
away from the bottom of the cylinder, which moves upward in time and a maximum packing
front created by the particles reaching the top of the �uid and packing together as closely as
possible. The clear zone front advection matches quite well.
There are, however, discrepancies between the simulation and experiment mostly in the

shape of the maximum packing front. In the simulations, we get a very sharp interface, while
the data show a much more di�use interface. It is not clear why this occurs. It is possible
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Figure 5. PMMA particle �otation (20 per cent in glycerol solution): particle volume fraction as a
function of location in the cylinder. (a) NMR data is given at 5min intervals; (b) simulation results at

approximately 5 min intervals.
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Plate 1. Simulation results for �0 = 0:20 at 19:5 min: (a) volume fraction;
(b) velocity vectors; (c) streamlines.

Plate 2. Couette �ow concentration pro�les as a function of turns of inner rod for initially well-mixed
suspension. (a) NMR images; (b) simulation results.
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Plate 3. Couette �ow concentration pro�les at di�erent number of turns. (a) NMR images, 59 per cent
top, 0 per cent bottom initially; (b) simulation results.
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Figure 6. Boundary conditions and mesh for concentric Couette simulations with
well mixed initial conditions.

that the large particles feel wall e�ects that are re�ected in the experimental data, but are not
represented in the model.
The simulation also has di�culties when the two fronts, or kinematic shocks, come together

resulting in wiggles in the solution. The kinematic shocks are created by discontinuities in the
density between zones of average concentration, the clear zone, and the maximum packing
zone. Oscillations at the clear zone front occurred and also led to negative concentrations at
the bottom of the cylinder.

Couette �ow: well mixed initial conditions

Problem description. Figure 6 shows the boundary conditions and mesh for the wide-gap
Couette �ow model with the well-mixed initial condition. The same materials, described in
Table I, were used except a maximum packing value of 0.64 volume fraction was used. The
bulk concentration �0 of the suspension was set to be 0.35 for this Couette �ow study.

Simulation. A comparison of experimental and �nite element results for the well-mixed ini-
tial condition experiment are presented in Plate 2. Plate 2(a) depicts the NMR images of
concentration pro�les taken at 0, 32, 96, and 417 turns. Even though the sample loading time
has been minimized, the experimental image taken at rest reveals inhomogeneous distribution
of particles prior to turning of the inner cylinder. A small, pure �uid zone at the bottom of
the device has developed while zones containing as much as 50 per cent volume fraction of
particles are scattered near the inner cylinder. Interestingly, the clear zone at the bottom is
carried around along the streamlines towards the top of the outer cylinder and persisted even
past 100 turns before viscous resuspension remixes the suspended particles in that region. The
image taken at 32 turns also reveal a small packed zone to the left of the low concentration
band. This is probably due to accumulation of particles displaced by the low concentration
band. The concentration pro�le at 417 turns no longer shows signs of the initial inhomogene-
ity, instead it shows pronounced radial gradient particle concentration due to shear-induced
migration.
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Snapshots of simulated particle concentration at similar time points are shown in Plate 2(b).
Based on what was observed experimentally, the assumption of initially ‘uniform’ solution is
not applied to this problem. Instead, the simulation allowed the particles to �oat quiescently
until a clear zone with the size comparable to that observed in the experiment has developed;
this consisted of about 5min �otation without turning of the inner cylinder in both the exper-
iment and simulation. Interestingly, when the simulations were carried out without matching
the initial conditions the results matched the experiments qualitatively, but did not capture the
transient correct behavior.
In the �rst snapshot, the model-generated pro�le shows di�erent regions of low and high

particle concentrations. Particles have packed near the bottom of the inner cylinder as well
as along the top wall of the outer cylinder. Other than the clear zone created at the bottom,
there is also a small band of low concentration particles at the top of the inner cylinder. After
29 turns, the regions of high and low concentrations along the outer cylinder still remain,
while the inhomogeneity along the inner cylinder remixes quickly as shear-induced migration
becomes dominant in that region. Although the packed zone at the top of the device is not
observed in the experiment, the comparison of the dynamic pro�les show good qualitative
agreement between the model and the experiment. At 93 turns, the high concentration band
along the outer cylinder thins out as more particles remix into the bulk. Eventually the band
disappears around 160 turns, well before the formation of another high concentration region
at the top of the outer cylinder, clearly visible in that last snapshot at 418 turns. Such a
concentrated region is not evident in the experiment, but can be viewed as a region where the
suspended particles are held in place as its �otation rate cancels out the convective=di�usive
�ux.

Couette �ow: sedimented initial condition

Problem description. The same materials and parameters were used as in the well-mixed
Couette problem. For the second study, although the overall particle concentration was 0.2, it
was divided between a particle-rich and particle-free region, as shown in Figure 7. The initial

Figure 7. Boundary conditions and mesh for concentric Couette with sedimented initial conditions.
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attempt to simulate this case using the mesh for the previous example was unsuccessful since
re�nement of mesh at the particle-rich and particle-free interface could not be accomplished
as it evolved with time. Instead, a di�erent, �ner mesh was used for this simulation. The
initial concentration of two distinct element blocks are set as close to the experimental values
as possible to yield a total of 0.2.
Simulation. Plate 3 shows a comparison of the NMR and �nite element results for the

initially sedimented suspension. In Plate 3(a), the NMR images for the second experiment
indicate that the particles have packed to the top of the Couette gap before the motor is
turned on. The concentration of the packed zone is 59 per cent, or 1 per cent over its
theoretical maximum packing value. This is conceivable since particles of one size may exhibit
some degree of polydispersity. Contrary to the �rst experiment, though, this packed zone
thins out at a slower rate. This may be attributed to the inertial e�ect as it dominates the
dynamics initially. Any mixing at higher turns occurs close to the outer cylinder wall while
the region around the inner cylinder wall remains devoid of particles due to shear-induced
migration.
The simulated concentration pro�les in Plate 3(b) agree qualitatively with the NMR imaging

results. An initial two-phase mixture moves in almost solid body rotation of the maximum
packing zone. In fact, simulations that were run without particle di�usion show almost identical
early-time results. However, the early mixing in the simulation occurs more quickly than in the
experiment. By 226 turns the e�ects of shear-induced migration can be seen. This migration
retards the mixing of the outer layers and the simulation actually begins to lag the experimental
results. By 586 turns, the maximum packing layer near the outer left side of the cylinder is
larger in the simulation than in the experiment. However, qualitative features, such as the
asymmetry created by buoyancy e�ects interacting with the turn direction, are preserved.
There are a number of reasons that may have caused the discrepancies. To simulate solid-

like behavior of the maximum packing zone, we set the viscosity to ramp to a very large
value (to approximate in�nity) as the concentration reaches maximum packing. However, the
material in this zone cannot support stresses as a true solid would. Also, the resuspension
mechanism, where individual particles peal o� the packed zone, cannot be mimicked by a
continuum equation. Potentially at two-phase model could be more successful at capturing the
resuspension behavior. More accurate dynamics may also be achieved with a �ner mesh and
a better numerical scheme that can handle time-variant concentration discontinuities. The nu-
merical method used has trouble capturing behavior when concentrations vary from maximum
packing to pure �uid over an element. The kinematic shock and discontinuous concentration
lead to numerical instabilities and oscillations in the solution.

CONCLUSIONS

We have achieved good qualitative agreement between the simulations and the experiments.
However, discrepancies exist between the shape of the concentration pro�les for the quies-
cent sedimentation data and the numerical model. Numerical di�culties also occur in situ-
ations where large changes in concentration and thus viscosity occur over short distances.
For this reason, the model of the shear �ow in the well-mixed wide-gap Couette was better
behaved than the quiescent settling and the Couette with the sedimented initial condition.
Many improvements to the model are being investigated to improve the agreement between
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the numerical results and the experimental data. Following Beckermann et al. [41] we plan
on implementing the solid–liquid phase change with a porous Brinkman source term that will
slow the �ow depending on the particle volume fraction. This is known to be a more robust
approach to phase-change than solely ramping the viscosity.
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